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The asymptotic behaviour of matrix superpropagators in 
quantum gravity 

H E De Meyert 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit-Gent, Krijgslaan 271-S9, 
B-9000 Gent, Belgium 

Received 10 November 1977, in final form 21 December 1977 

Abstract. In the context of quantum gravity, the asymptotic behaviour of exponential 
multi-matrix superpropagators is investigated. By varying the dimension of the matrix 
field, a remarkable property of two-point functions is found, which suggests that quantum 
gravity is ambiguity free. 

1. Introduction 

In non-linear chiral theories and gravity modified field theories, which involve 
Lagrangians depending on matrix fields, one needs as a basic tool for calculations the 
vacuum expectation values of time-ordered products of scalar and matrix functions of 
these fields. Delbourgo (1972) used Fourier transform methods to evaluate super- 
propagators for fields with isospin. By means of superpropagator calculations Isham 
er a1 (1971) proved the regulating effect of rational parametrised gravity on quantum 
electrodynamics, and they afterwards demonstrated the advantages of a localisable 
(i.e. exponential) parametrisation of the gravitational interaction (Isham et a1 1972). 
In the latter case one needs the superpropagator 

Si:! [A] (eKd(x)up, eKd(’) -fa ), (1 * 1) 

(4U0 ( x ) 4 V 8 ( o ) )  = k ( 7 ) U - f 7 ) @ 8  + 7)CI87)& - 2C7)Up7)-f8)A(X)* (1.2) 

where the symmetrical graviton field & p ( x )  propagates as 

Herein A ( x )  denotes the zero-mass scalar propagator, 7) is the Minkowski metric, K is 
an arbitrary constant and c is the so called gauge parameter. It has been pointed out 
by Isham er a1 (1973) that the form (1.2) for the bare graviton propagator is valid only 
when c = w ( w  - 1)+& where w is the weight of the contravariant tensor density 6’” 
parametrised in the form 

g’” 3 (J-g)-Jg’” = (eKd)y 

An analytical expression for 8‘;t{[A] was first obtained by Ashmore and Delbourgo 
(1973a) by use of an integral representation of an arbitrary power of the determinant 
of a matrix, originally due to von Siege1 (1935). They also found that SF![A] is an 
entire function of A. They showed that the leading behaviour of that function, defined 

t Aangesteld navorser bij het Nationaal Fonds voor Wetenschappelijk Onderzoek (Belgium). 
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by (l . l) ,  as A +  +CD is given by 

whereby a, /3, y and S can take any value running from 1 to 4. It has further been 
demonstrated that the Ashmore technique can be enlarged to include the case of 
chiral SU(3) superpropagators (Ashmore and Delbourgo 1973b). An alternative 
method for the evaluation of such superpropagators has been given by Kapoor (1976). 

Defining two-point amplitudes %i:![A] by 

j = 1  I 

it has been shown (De Meyer 1976) that the Ashmore technique can be used to 
calculate all propagators of the form Sp![Aj or 8(k4)1[A]. By explicit calculation of 
SYi [A] it was found that 

as 4(x) tends to infinity, whereas it was also argued that in the same limit, S$41][A] 
behaves as: 

&:;[A] ( K ~ A ( x ) ) ~ / ~  e1K2('-c)A(x). (1.6) 

In the present paper the leading asymptotic behaviour of the two-point amplitudes 
Sf ) [A]  is investigated. In particular an argument is given which shows that the traced 
superpropagators Y(k4[A] defined by 

behave well for c > 1, in the sense that for such c values T'$[A] is a finite distribution, 
free of ambiguities. Furthermore, we analyse the asymptotic behaviour of the 
functions @<![A] for some v values, where v refers to the dimensions of the matrix 
field q L P ( x ) .  From this we get an indication that the question of Isham et a1 (1973), as 
to whether quantum gravity is ambiguity free, can be affirmatively answered. 

2. An asymptotic limiting procedure 

By the use of the Ashmore technique (Ashmore and Delbourgo 1973a) one easily 
,obtains the following integral representation: 

Consequently, the trace superpropagator Si:! [A] can be written as 

(2.2) 
O0 [K 'A(x)(X - c Tr X)]" 

N = l  
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The series in the right-hand side of (2.2) can be summed, and one finds 

X Tr[JK’A(x:)(X - c Tr XXII[~JK~A(X)(X - c Tr X)]}], (2.3) 

where I , ( z )  is the modified Bessel function of the first kind. The leading term of the 
asymptotic expansion of I , ( z )  is given by (Gradshteyn and Ryzhik 1965): 

I“(z) - e‘/ J z .  
I z l - t a  

Therefore, one obtains from (2.3) 

x T r  {[K’A(x)(X-C Tr X)]’’4 e2Jw2A(xHX-c 1. (2.5) 
Since the matrix X can be diagonalised in the integrand of the representation (2.2), 
one can, without loss of generality, regard X in (2.5) as being diagonal. One also 
introduces the new variables A = Tr X, and three dimensionless arbitrary variables 
depending on the elements of the diagonal matrix X. The matrix X occurs twice in the 
integrand of (2.5) in the combination XA(x). It is clear that the principal contribution 
to 5?! [A] as A +  +a comes from these X in the product XA(x), whereby one of the 
positive diagonal elements reaches the maximum value A, the other elements then 
being zero. As a consequence, XA(x) in (2.5) can be replaced by AAjx). Finally one 
suggests the following substitution rule: 

to obtain a formula for the leading term of the asymptotic expansion of Sy! [A]. In 
(2.6) p(A) is a so far undetermined weight function. From the foregoing it follows that 

dA p(A)[~’( l -  C)AA(X)]~’~ e2’K2(1-c)AA(x’. 

By putting A = t 2 ,  and making the choice p ( t 2 ) =  t” ,  with y a constant, for the weight 
function, (2.7) transforms to 

00 

fl! [A] [ ~ ’ ( l -  C)A(X)]’/~ I dt tq+” e - r2  e Z r J ~ 2 ( l - c ) A ( x )  
7 

0 

or after carrying out the integration: 

Herein Dp(z) is a parabolic cylinder function, of which the asymptotic expansion is 
given by (Gradshteyn and Ryzhik 1965): 
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Substitution of the leading term in (2.8) leads to 

(2.9) 

which is in perfect agreement with the result (1.3) if one chooses y = 1. The substitu- 
tion rule (2.6) is now brought into the form: 

( K 2 ~ ( X ) ) 1 + f Y  eK2(1-c)A(x) fi:![Al - 
A-+CO 

(2.10) 

By direct calculation one can verify that naive changing of X to Tr X in the represen- 
tation (2.2) does not reproduce the correct asymptotic behaviour of fi! [A]. The fact 
that the weight function in (2.10) turns out to be different from unity demonstrates 
that the integrations with respect to the three dimensionless variables contribute to 
the asymptotic behaviour. These integrations are similar in all cases whereby the 
superpropagator can be expressed as a single integral of the Siegel-type. Therefore 
(2.10) can be used to recover the asymptotic properties of the functions T!:![A] or 

In order to calculate the leading term in the asymptotic expansion of S!:![A], one 
[Al. 

starts from the following expression: 

(f: j=l hq==L>. (2.11) 

By use of the limiting procedure, one obtains 
CO 

(Tr dL(x) ,  fi Tr dMj(O)) A-+cO - LAL(x) 5, dA All2  e-^[(l -c )AIL 
i=1 

=L[(l-c)A(x)ILr(L+$), (i M = L ) ,  
i = 1  

from which one finds after a short calculation the following behaviour of C ] [ A ]  as 
A +  +CO: 

It is easily proved that 

(2.12) 

where l F l ( a ;  b ;  z )  is the confluent hypergeometrical function. The asymptotic 
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expansion of this function is given by 

with 

* . ,  
a (0 + 1)P(P + 1)  + . g ( a ;  p ;  z )= l+-+ 

l ! t  2 ! z 2  

and therefore, one finally obtains 

(2.13) 

This behaviour is in perfect agreement with the expected asymptotic behaviour (1.6) 
of %$:;[A]. It is also obvious that &:![A] behaves in the same way as %'$;i[A] as 
A + +CO, and one thus has a confirmation that for c > 1 the distributions %',4! [A] and 
%::![A] are free of ambiguities. 

3/2 f r2 (1 -~ )A(x)  f i ! [ A l  A--m [ K ~ A ( X ) I  e 

3. Asymptotic behaviour for variable field dimension 

We now turn to the problem of evaluating the leading term in the asymptotic 
expansion of the functions %'f][A] with k > 1 and I > 1 .  Since in these cases the 
Ashmore technique leads to multiple integrals of the Siegel-type, it is not possible to 
apply the limiting procedure of 9 2. Instead, we try to make an estimate of the leading 
term by the following dimensional analysis. 

Looking at the trace superpropagator e! [A], where v stands for the dimension of 
the field & @ ( x ) ,  one notices that the calculation of this superpropagator is almost 
trivial for v = 1. Indeed, one easily finds 

, (3.1) r & ( x )  , ~ d d O ) )  = er2(l -c)A(x)  @!'l[AI=((e , 
with the help of (1.2) which in the present case reduces to 

(+(XI, 4(0))=(1 -c)A(x) .  

Obviously 

@$[A] - (K'A(X))' e"2('-c)A(x). 
A-b+CQ 

(3.2) 

Comparing this to the leading term in the asymptotic expansion of Ty! [A]: 

9 (3.3) 3/2 r2(l--c)A(x) @i'?[A] - ( K ~ A ( x ) )  e 
A++m 

one remarks that the exponential factor is the same, whereas the accompanying power 
of A(x) is not. 

In the case v = 2, the superpropagator Si:! [A] can be evaluated in exactly the same 
way as for v = 4. Defining for positive natural numbers v coefficients a$)  and 
functions a"[A] by: 

(Tr q ! ~ ~ ( x ) , T r q 5 ~ ( O ) ) = N ! v a $ ) h ~ ( x ) ,  (3.4) 
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whereby c&(x) is a (v, v) matrix field satisfying (2.1), one finally obtains in a straight- 
forward manner 

(3.6) u(~)[A] = [e2(1-2c)(2 + r z  LO(z 11 1.z = x  'A(x)/Z 

L ~ ( Z )  - e'/Jz. (3.7) 

Herein, Lo(z) is a modified Struve function, which behaves asymptotically as 

2-CS 

By combining (3.4)-(3.7) it is easily demonstrated that 

(3.8) 1/2 xZ(l-c)A(x)  GI [AI A;'oo ( K 2 W  1) e 

In this expression one recovers the same exponential as in (3.2) and (3.3). 
Finally '@I [A] can be evaluated by slightly modifying the Ashmore technique, 

which in its original form is only valid for even dimensions of the matrix field 
(Ashmore and Delbourgo 1973a). It turns out that for odd dimensions the cal- 
culations become much more involved, which is an indirect manifestation of the non- 
trivial and fundamental differences between even and odd fields, already observed 
by Delbourgo (1972). We only give here the result for U ( ~ ' [ A ] ,  which by adaption 
of the notations, is the same as that quoted in a footnote of a paper by Ashmore and 
Delbourgo (1973b): 

U'~)[A] ={$z  e-'c2(Ei(22)-2Ei(z)+1n $2 + y - 2 )  

+f ez(1-2c'[(4c - 3) sinh z + (4.2 + 5 )  cosh z +4]}1,=K2A(X)/2. (3.9) 

Herein Ei(z) is the exponential integral, and y is the Euler constant. By the aid of the 
asymptotic expansion formula 

Ei(z) - ez/z, 
L'+CS 

one obtains 

(3.10) 

It is a striking fact that the formulae (3.2), (3.3), (3.8) and (3.10) can be taken together 
in a single one 

(v = 1,2 ,  3,4), (3.11) 

and this leads us to believe that (3.11) also holds for any positive natural number v. 
Consequently, when one is only taking interest in knowing whether the arbitrary 
choice of gauge can be exploited to make the gravity superpropagator ambiguity-free, 
a simple calculation of the corresponding superpropagator in the scalar case v = 1, 
provides the answer. If on the other hand, one likes to obtain the complete leading 
asymptotic term, it seems sufficient to calculate this term for the corresponding 
superpropagator in the much simpler case v = 2 ,  and to change afterwards the 
exponent of the power of A(x) in accordance with the formula (3.11). We have also 
evaluated the asymptotic behaviour of the functions Y:yI)[A] for v = 1, 2 ,4  and have 
found 

u - 1 ) / 2  K ~ ( ~ - c ) A ( x )  Y?1) [AI AyCS (K~A(x))( e 

9 (v = 19-23 41, F:y)[A] A~~ (K2A(x))(v-1)/2 ek2( l - c )A(x)  
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which is in agreement with the previous remarks. Moreover, it is seen that the value 
for the exponent of the power of A(x) is typical for four-dimensional real symmetric 
matrix fields 4,@(x) satisfying (2.1). 

Turning to the evaluation of the asymptotic behaviour of $(k41)[A] one first cal- 
culates 

k ~ 4 ( ~ )  ek4(0)  e k l ~ z ( l - ~ ) A ( ~ )  $21)[A] = &if[A] = (e , >=  

It is now an easy step to suggest that 

or even more generally 

4. Remarks 

(3.12) 

(3.13) 

The results of the preceding section can be generalised to the case of N-point 
amplitudes. As an example we consider 

7 ), K . d r ( X )  Tr e K & ( Y )  Tr e"+(') 
y$Y1,1[~12,  A239 ~ 3 1 1 ~  ( ~ r  e , 

where v is the dimension of the matrix field, and 

A12 A(x - y ) ,  A23 A( y - t) ,  A31 A ( t  - x). 

For Y = 1, one obtains 

Defining 

or 

a + P = N ,  a + y = M ,  P + y = L ,  

it is easily verified that 

( d J L ( X ) ,  4YY)> 4N(Z)) 

(4.4) 

(1 - C ) ~ + ~ + ' ' A & A ~ ~ A : ~  if L + M + N is even, and 
IM - NI d L s M + N, (cyclic permutation) 

otherwise. 



892 H E  De Meyer 

Therefore (4.1) reduces to 

and one may conjecture that 

+<:.1 [ ~ i i I  ( K  2hii)(v- 1 )/2 e ~ z ( l  -c)A,, (i, j = 1 ,2 ,3 ,  i Zj). (4.6) 

The generalisation to N-point amplitudes ( N > 3 )  is now trivial. It has to be noted 
that the validity of (3.13) and (4.6) for Y = 2 has been checked by direct calculation. A 
diagonalisation technique has been used to evaluate Ti:)[A] and S\?!,I [Aij]. The 
reader is referred to a future publication for details. 

Finally we want to comment on a striking relationship. The chiral superpropagator 
calculations of Delbourgo (1972) and Ashmore and Delbourgo (1973b) demonstrate 
that if the field &'(x) is Hermitian and satisfies 

(4 /  (x 194; (0)) = m a 8  A(x )t (4.7) 

the asymptotic behaviour of the superpropagators %'!yl [A], which are the chiral 
analogues of Si:] [A], is given for SU(2) by 

and for SU(3) by 

(4.9) 

if not all field components are real. In the latter case the asymptotic behaviour is 
exactly that of the gravity analogue. It is almost trivial that 

and one is thus led to generalise (4.8)-(4.10) by the formula 

(4.10) 

(4.11) 

Comparing this to (3.11) one notices that by imposing on the Hermitian fields the 
supplementary condition of reality, the exponent of the power of A(x)  in the leading 
asymptotic term is divided by two. This relationship can be found at a different level 
in the Ashmore algorithm. Where for Hermitian fields there occurs a determinant of 
an antisymmetrical matrix, one finds at the same stage for real symmetrical fields a 
Pfaffian, which is essentially the square root of a determinant. These facts indicate 
that there might exist group-theoretical arguments to obtain (3.11) and (4.11) in a 
rigorous way. 

Another important difference between chiral and gravity superpropagators is that 
for the latter the gauge parameter c (or the weight w )  can be given values that make 
the superpropagators free of ambiguities. As in our belief this manifest uniqueness in 
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certain gauges should not contradict the usually supposed gauge and weight indepen- 
dent of physical amplitudes, it provides us with an indication that in other gauges too 
ambiguities might be avoided. Knowing that this is only achieved at the expense of a 
supplementary condition such as the Lehman-Pohlmeyer minimality ansatz, we can 
conclude that the invocation of such a condition in certain gauges becomes less 
artificial. 
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